
Multiplying Binomials With Special Products 

In this assignment we will learn to multiply binomials which give special products. Recognition 
of these special products will become particularly important in further mathematics. 

The first special product results from multiplying two binomials, one of which is the sum and the 
other the difference of two terms. 

Here are some examples: ( )( )a b a b+ −  

( )( )
( )( )
( )(

3 2 3 2

7 7

2 5 2 5

x x

y y

a a )

+ −

− +

+ −

Notice that with each pair of binomials the only thing that is different is the sign on the second 
term. In one binomial the second term is positive, giving us the sum of two terms, and in the 
other the second term is negative, giving us the difference of the same two terms. 

We will now see what happens to each pair of binomials when we multiply them using the FOIL 
method. 

( )   ( )a b a b+ − 2 2a ab ab b− + −
F      O     I     L 

2 20a ab b= + −  
2 2a b= −
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( )(3 2 3 2x x+ − 29 6 6x x x− + −
  F      O     I     L 

29 0x x 4= + −  
29 4x= −

) 9

 

( )(7 7y y− + 2 7 7 4y y y+ − −
  F      O     I     L 

2 0 4y y 9= + −  
2 49y= −

) 5( )(2 5 2 5a a+ − 24 10 10 2a a a− + −  
  F       O       I       L 

24 0 2a a 5= + −
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24 2a= −  
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Notice that in each case the middle terms of the product (O & I) are opposites of each other and 
cancel each other out. This means that our final product will have only two terms. This product 
has a special name. It is called the difference of two squares. The only way to get a product 
which is the difference of two squares is to multiply two binomials which are the sum and 
difference of two terms. 

A short cut way to multiply the sum and difference of two terms is to recognize that the terms of 
the product are the squares of the first and second terms of the binomials. 

( )( ) 2 2A B A B A B+ − = −

EXAMPLES:  

( )( )a b a b+ −  

The square of the first term → ← the square of the second term ( ) ( )2a b− 2

2 2a b−  

( )( )3 2 3 2x x+ −  

The square of the first term → ← the square of the second term ( ) ( )23 2x − 2

29 4x −  

( )( )7 7y y− +

The square of the first term → ( ) ← the square of the second term ( )2 7y − 2

2 49y −  

( )( )2 5 2 5a a+ −

The square of the first term → ← the square of the second term ( ) ( )22 5a − 2

524 2a −

The sign between the two terms of the product is always negative because it comes from the “L” 
of FOIL. The “L” of FOIL is always the product of a positive and a negative number and 
consequently is always negative. 



Another special product results from multiplying a binomial by itself, or squaring the binomial. 

Here are some examples. 
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NOTICE that the binomials in each pair are identical to each other. 

We will now see what happens when we multiply each pair of binomials using the FOIL method. 

( )  a a( ) b ab ba b a b+ + 2 2+ +  +
 F      O     I     L 

2 22a ab b= + +

9

 

( )   ( )( )22 3 2 3 2 3y y y+ = + + 24 6 6y y y+ + +
   F      O     I      L 

( )24 2 6y y 9= + +

9

 
24 12y y= + +

) 20 20 25x x x

 

( )  16(4 5 4 5x x− − 2 − +  −
   F        O       I        L 

( )216 2 20 25x x= + − +  
216 40 25x x= − +

)7

 

( )   ( )(27 7y y y− = − −

This instructional aid was prepared by the Tallahassee Community College Learning Commons.

y2 -7y-7y+49
F   O    I     L

= y2-2(7y)+49
=y2-14y+49



NOTICE the following things about these products. 

a. The third term is always positive.  This is because the third term comes from the “L” of
FOIL.  Because the binomials are both the same, the L of FOIL is the result of  
multiplying either two positive terms or two negative terms. In either case the product is 

 always positive. 

b. The “O” and “I” of FOIL give two identical terms. Consequently the middle term of the
final product is twice one of those identical terms. Each of these terms is the product of 
the first and second term of one of the factors. 

c. The middle term of the product will have the same sign as that in the middle of the two
 factors.  The middle term of the product is positive if the terms of the binomials are 

positive. The  middle term of the product is negative if the binomials have a negative 
 term. 

d. The first term of the product is the square of the first term of the binomials.

e. The third term of the product is the square of the second term of the binomials.

These special products are called Perfect Square Trinomials. 
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Once we recognize that squaring a binomial gives a special product, we can take a short cut. 

EXAMPLE 1:  ( )  (a b a b+ + )

2

+

2

9

The square of the first term →  ← the square of the second term ( ) ( )2 2a ab b+ +
        Twice the product of the first and second term 

= +  2 22a ab b

EXAMPLE 2:  ( )22 3y +

The square of the first term →  ← the square of the second term ( ) ( ) ( )22 2 6 3y y+ +
Twice the product of the first and second term 

24 12y y= +  +
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EXAMPLE 3:  ( )  ( )4 5 4 5x x− −

The square of the first term → ( ) ( ) ( )24 2 20 5x x 2+ − + −  ← the square of the second term 
   Twice the product of the 
first and second term
16x2-40x+25

EXAMPLE 4:  ( )  27y −

The square of the first term → ( ) ( ) ( )2 2 7 7y y 2+ − + −  ← the square of the second term 
        Twice the product of the first and second term 

 2 14 49y y= − +

EXERCISES: 

a. ( ) f.(4x x− + )4 ( )( )4 4x x− −

b. ( ) g.(2 9 2 9y y+ − ) ( )( )2 9 2 9y y+ +

c. ( ) h.(6a a+ + )6 ( )( )6 6a a+ −

d. ( ) i.(3 4 3 4x x− + ) ( )( )3 4 3 4x x− −

e. ( j.  ( ))22y − 22 1x +
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KEY: 

a. f.2 16x − 2 8 16x x− +
b. g.24 8y − 1 124 36 8y y+ +
c. h.2 12 36a a+ + 2 36a −
d. i.29 1x − 6 629 24 1x x− +
e. j.2 4y y− + 4 124 4x x+ +
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