

Expressions Written in Terms of One Variable

Translations					
+		× OR ·	\div OR $\frac{a}{b}$	=	()
sum	difference	of	quotient	is	times the
increased by	subtract	product	per	are	difference of
more	minus	multiple	ratio	were	twice the sum of
and	decreased by	twice	divided by	will be	more than
plus	less	times	shared	gives	the
combined	take away			totals	difference of
together				makes	less than the sum of

EXAMPLE: Write a math expression to represent: Twice the sum of nine and a number.

SOLUTION: Assign a variable each time an unknown number is mentioned, translate any mathematical terms, and simplify.

STEP 1: Assign the variable *n* to the unknown number and write any translation words.

2(9+n)18 + 2n

STEP 2: Replace any translations with math terms and simplify the answer as needed.

EXAMPLE: Write a math expression to represent: Three less than one half of a number.

SOLUTION: Assign a variable each time an unknown number is mentioned, translate any mathematical terms, and simplify.

STEP 1: Assign the variable n to the unknown number and write any translation words.

STEP 2: Replace any translations with math terms and simplify the answer as needed.

Three less than one half of a number 3 subtracted from
$$\frac{1}{2}$$
 times n

sum of

(add

and

and

a number

$$\frac{1}{2}n-3$$

Twice

2 times

the

Expressions Written in Terms of One Variable

A tactic for translating expressions is to describe two or more unknown numbers in terms of only one variable. It is important to make a good choice for the unknown number that the variable represents.

EXAMPLE: "The length of a rectangle is 3ft. longer than the width." Write a variable expression for each unknown by assigning a variable for one of the unknowns and using that same variable in an expression which represents the given relationship between the two unknowns.

SOLUTION: Consider the basic relationship:

The length is 3 ft. longer than the width.

length = 3 + width

Let w = width

Then 3 + w or w + 3 =length

A situation that occurs frequently in math problems is to know the sum of two numbers and have to write a variable expression for each number.

Use one variable to represent two unknown parts when the sum of the two parts is known:

Let \underline{x} = one part

Then **total** – x = the other part

EXAMPLE: The sum of two numbers is 23.

SOLUTION: Let \underline{n} = one of the numbers (it does not matter which number)

then 23 - n = the other number.

EXAMPLE: A board is 8 ft. long. It is cut into two pieces. Write a variable expression to represent the length of each piece.

SOLUTION: Drawing helps.

The sum of the two pieces is 8ft.

We can let \underline{n} = the length of one piece.

The length of the other piece would be what's left after cutting *n* from 8.

That would be 8 - n (the sum - n).

Expressions Written in Terms of One Variable - Exercises

Assign the variable n to the number and write a mathematical expression for the sentence.

- 1. Twelve more than the product of fifteen and a number.
- 2. Half of the difference of seven and a number.
- 3. The product of 6 less than a number and 5.

Tell which unknown the variable represents.

Use that variable in expressions to represent the other unknown number(s).

4.	The width of a rectangle is 2 cm less than the length

Let It -		
then	=	

5. The number of nickels is three times the number of dimes.

The number of guarters is two more than the number of dimes.

Let
$$n$$
 = the number of _____
then ____ = the number of ____
and ___ = the number of ____

6. The price of the hardback book is one dollar less than twice the price of the paperback book.

Let <i>n</i> = price of the _	book		
then	= price of the		book

7. The sum of two numbers is 15.

Let	_ = one number		
and	= the other number		

8. A total of \$7,000 was invested. Part of it was invested in stocks and the rest of it was invested in bonds.

```
Let _____ = the amount invested in stocks, and ____ = the amount invested in bonds.
```

Answer Key

1.
$$15n + 12$$

2.
$$\frac{1}{2}(7-n)$$

3.
$$5(n-6)$$

4.
$$n = \text{length}, n - 2 = \text{width}$$

5. dimes

$$3n = \text{number of nickels}$$

$$n + 2$$
 = number of quarters

6.
$$n = \text{price of paperback book}$$

$$2n-1$$
 = price of hardback book

7.
$$n = \text{one number}$$

$$15 - n =$$
the other number

8. n =the amount invested in stocks

$$7000 - n$$
 = the amount invested in bonds